Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nanoscale Horiz ; 9(5): 863-872, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38533738

RESUMEN

The behavior of polyelectrolytes in confined spaces has direct relevance to the protein mediated ion transport in living organisms. In this paper, we govern lithium chloride transport by the interface provided by polyelectrolytes, polycation, poly(diallyldimethylammonium chloride) (PDDA) and, polyanion, double stranded deoxyribonucleic acid (dsDNA), in confined graphene oxide (GO) membranes. Polyelectrolyte-GO interfaces demonstrate neuromorphic functions that were successfully applied with nanochannel ion interactions contributed, resulting in ion memory effects. Excitatory and inhibitory post-synaptic currents were tuned continuously as the number of pulses applied increased accordingly, increasing decay times. Furthermore, we demonstrated the short-term memory of a trained vs untrained device in computation. On account of its simple and safe production along with its robustness and stability, we anticipate our device to be a low dimensional building block for arrays to embed artificial neural networks in hardware for neuromorphic computing. Additionally, incorporating such devices with sensing and actuating parts for a complete feedback loop produces robotics with its own ability to learn by modifying actuation based on sensing data.


Asunto(s)
ADN , Grafito , Polietilenos , Compuestos de Amonio Cuaternario , Grafito/química , ADN/química , Compuestos de Amonio Cuaternario/química , Polietilenos/química , Redes Neurales de la Computación , Membranas Artificiales , Óxidos/química
2.
Polymers (Basel) ; 14(23)2022 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-36501541

RESUMEN

Urate oxidase (UOx) surrounded by synthetic macromolecules, such as polyethyleneimine (PEI), poly(allylamine hydrochloride) (PAH), and poly(sodium 4-styrenesulfonate) (PSS) is a convenient model of redox-active biomacromolecules in a crowded environment and could display high enzymatic activity towards uric acid, an important marker of COVID-19 patients. In this work, the carbon fiber electrode was modified with Prussian blue (PB) redox mediator, UOx layer, and a layer-by-layer assembled polyelectrolyte film, which forms a complex coacervate consisting of a weakly charged polyelectrolyte (PEI or PAH) and a highly charged one (PSS). The film deposition process was controlled by cyclic voltammetry and scanning electron microscopy coupled with energy-dispersive X-ray analysis (at the stage of PB deposition) and through quartz crystal microbalance technique (at latter stages) revealed uniform distribution of the polyelectrolyte layers. Variation of the polyelectrolyte film composition derived the following statements. (1) There is a linear correlation between electrochemical signal and concentration of uric acid in the range of 10-4-10-6 M. (2) An increase in the number of polyelectrolyte layers provides more reproducible values for uric acid concentration in real urine samples of SARS-CoV-2 patients measured by electrochemical enzyme assay, which are comparable to those of spectrophotometric assay. (3) The PAH/UOx/PSS/(PAH/PSS)2-coated carbon fiber electrode displays the highest sensitivity towards uric acid. (4) There is a high enzyme activity of UOx immobilized into the hydrogel nanolayer (values of the Michaelis-Menten constant are up to 2 µM) and, consequently, high affinity to uric acid.

3.
ACS Appl Mater Interfaces ; 14(5): 7321-7328, 2022 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-35080838

RESUMEN

We demonstrate that our bio-electrochemical platform facilitates the reduction of detection time from the 3-day period of the existing tests to 15 min. Machine learning and robotized bioanalytical platforms require the principles such as hydrogel-based actuators for fast and easy analysis of bioactive analytes. Bacteria are fragile and environmentally sensitive microorganisms that require a special environment to support their lifecycles during analytical tests. Here, we develop a bio-electrochemical platform based on the soft hydrogel/eutectic gallium-indium alloy interface for the detection of Streptococcus thermophilus and Bacillus coagulans bacteria in various mediums. The soft hydrogel-based device is capable to support bacteria' viability during detection time. Current-voltage data are used for multilayer perceptron algorithm training. The multilayer perceptron model is capable of detecting bacterial concentrations in the 104 to 108 cfu/mL range of the culture medium or in the dairy products with high accuracy (94%). Such a fast and easy biodetection is extremely important for food and agriculture industries and biomedical and environmental science.


Asunto(s)
Bacillus coagulans/aislamiento & purificación , Técnicas Electroquímicas/métodos , Hidrogeles/química , Aprendizaje Automático , Streptococcus thermophilus/aislamiento & purificación , Aleaciones/química , Teoría Funcional de la Densidad , Galio/química , Indio/química
4.
Polymers (Basel) ; 15(1)2022 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-36616395

RESUMEN

Coacervation is a self-assembly strategy based on the complexation of polyelectrolytes, which is utilized in biomedicine and agriculture, as well as automotive and textile industries. In this paper, we developed a new approach to the on-demand periodic formation of polyelectrolyte complexes through a Liesegang-type hierarchical organization. Adjustment of reaction conditions allows us to assemble materials with a tunable spatiotemporal geometry and establish materials' production cycles with a regulated periodicity. The proposed methodology allows the membrane to self-assemble when striving to reach balance and self-heal after exposure to external stimuli, such as potential difference and high pH. Using chronopotentiometry, K+ ion permeability behavior of the PEI-PSS coacervate membranes was demonstrated. The periodically self-assembled polyelectrolyte nanomembranes could further be integrated into novel energy storage devices and intelligent biocompatible membranes for bionics, soft nanorobotics, biosensing, and biocomputing.

5.
Macromol Biosci ; 21(10): e2100117, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34272830

RESUMEN

Nowadays, polyelectrolytes play an essential role in the development of new materials. Their use allows creating new properties of materials and surfaces and vary them in a wide range. Basically, modern methods are divided into three areas-the process of layer-by-layer deposition, free-standing films, and hydrogels based on polyelectrolytes. Layer-by-layer assembly of polyelectrolytes on various surfaces is a powerful technique. It allows giving surfaces new properties, for example, protect them from corrosion. Free-standing films are essential tools for the design of membranes and sensors. Hydrogels based on polyelectrolytes have recently shown their applicability in electrical and materials science. The creation of new materials and components with controlled properties can be achieved using polyelectrolytes. This review focuses on new technologies that have been developed with polyelectrolytes over the last five years.


Asunto(s)
Hidrogeles , Polielectrolitos
6.
Annu Rev Chem Biomol Eng ; 12: 63-95, 2021 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-33909470

RESUMEN

Nowadays, information processing is based on semiconductor (e.g., silicon) devices. Unfortunately, the performance of such devices has natural limitations owing to the physics of semiconductors. Therefore, the problem of finding new strategies for storing and processing an ever-increasing amount of diverse data is very urgent. To solve this problem, scientists have found inspiration in nature, because living organisms have developed uniquely productive and efficient mechanisms for processing and storing information. We address several biological aspects of information and artificial models mimicking corresponding bioprocesses. For instance, we review the formation of synchronization patterns and the emergence of order out of chaos in model chemical systems. We also consider molecular logic and ion fluxes as information carriers. Finally, we consider recent progress in infochemistry, a new direction at the interface of chemistry, biology, and computer science, considering unconventional methods of information processing.


Asunto(s)
Semiconductores
7.
J Phys Chem Lett ; 12(7): 2017-2022, 2021 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-33600176

RESUMEN

The hydrogels of the polyelectrolytes polyethylenimine and poly(acrylic acid) are used to form a thin-layer interface on the gallium-indium eutectic alloy's surface. The proposed method of gradually increasing the applied voltage reveals the possibility of formation of electronic components: diode, capacitor, resistor, and memristor. The components can be changed to each other many times. A multilayer perceptron model with one hidden layer and 12 nodes allows identifying hydrogels' composition and automatically setting the desired architecture of electronic components. The design of electronic components makes it possible to easy-to-produce new electronic parts and programmable soft-matter electronics.

8.
RSC Adv ; 11(57): 36215-36221, 2021 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-35492756

RESUMEN

Nowadays, there are several methods for the detection of various bioelements during SARS-CoV-2. Many of them require special equipment, high expenses, and a long time to obtain results. In this study, we aim to use polyelectrolyte multilayers for robust carbon fiber-based potentiometric sensing to determine the ion concentration in human biofluids of COVID-19 patients. The polyethyleneimine/polystyrene sulfonate complex is hygroscopic and has the ability to retain counterions of inorganic salts. This fact makes it possible to create a flexible ionometric system with a pseudo-liquid connection. The formation of the polyethyleneimine/polystyrene sulfonate complex allows for the adhesion of a hydrophobic ion-selective membrane, and creates a Nernst response in a miniature sensor system. This approach discloses the development of miniaturized ion-selective electrodes and their future application to monitor analyte changes as micro and macroelement ions in the human body to identify correlation to SARS-CoV-2. An imbalance in the content of potassium and sodium in urine and blood is directly related to changes in the zinc content in patients with coronavirus. The proposed method for assessing the condition of patients will allow fast determination of the severity of the course of the disease.

9.
ACS Omega ; 5(30): 18987-18994, 2020 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-32775900

RESUMEN

In this paper, we describe an electrochemical sensing platform-ElectroSens-for the detection of Zn based on self-assembled polyelectrolyte multilayers on the carbon fiber (CF) electrode surface. The CF-extended surface facilitates the usage of a small volume electrochemical cell (1 mL) without stirring. This approach allows making a low-cost three-electrode platform. Working electrode modification with layer-by-layer assembly of polyethyleneimine (PEI), poly(sodium 4-styrenesulfonate) (PSS), and mercury nitrate layers eliminates solution toxicity and provides stable stripping voltammetry measurements. The stable, robust, sustainable, and even reusable Ag/AgCl reference electrode consists of adsorbed 32 PEI-KCl/PSS-KCl bilayers on the CF/silver paste separated from the outer solution by a polyvinyl chloride membrane. The polyelectrolyte-based sensor interface prevents adsorption of protein molecules from biological liquids on the CF surface that leads to a sensitivity increase of up to 2.2 µA/M for Zn2+ detection and provides a low limit of detection of 4.6 × 10-8 M. The linear range for Zn detection is 1 × 10-7 to 1 × 10-5 M. A portable potentiostat connected via wireless to a smartphone with an android-based software is also provided. The ElectroSens demonstrates reproducibility and repeatability of data for the detection of Zn in blood and urine without the digestion step.

10.
ACS Appl Bio Mater ; 3(11): 7352-7356, 2020 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-35019476

RESUMEN

This work depicts an electrochemical hydrogel-eutectic gallium indium alloy interface for the detection of tick-borne encephalitis (TBE) virus. This interface allows recording of nonlinear current-voltage responses, depending on the composition of the hydrogel. The current-voltage data for the machine learning model are trained by a multilayer perceptron. This model accurately recognizes the TBE antibody, antigen, and an antibody-antigen complex in mixture with interfering bovine serum albumin with 93% accuracy. Thus, this interface can be used as a convenient method for expressed viruses and pathogens detection.

11.
ACS Omega ; 4(13): 15421-15427, 2019 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-31572842

RESUMEN

A novel flexible ion-selective sensor for potassium and sodium detection was proposed. Flexible ion-selective electrodes with pseudo-liquid internal solution on contrary to the system with a solid contact provided a more stable analytical signal. Such advantages were achieved because of polyelectrolyte (PEI/PSS) layers adsorption on the conduct substrate with a layer-by-layer technique. Such an approach demonstrated that ion-selective electrodes save sensitivity with Nernstian dependence: 56.2 ± 1.4 mV/dec a Na+ and 56.3 ± 1.9 mV/dec a K+ , as well as a fast time of response for potassium (5 s) and sodium (8 s) was shown. The sensing platform proposed demonstrates a better time of response and is close to the Nernstian value of sensitivity with a sensor low cost. The results proposed confirm a pseudo-liquid junction for the ion-selective electrode. Biocompatibility of an ion-selective sensing platform was demonstrated at potassium potentiometric measurements in Escherichia coli biofilms. Potassium levels in a biofilm were measured with potentiometry and showed agreement with the previous results.

12.
Front Chem ; 6: 256, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30009159

RESUMEN

The development of electrochemical multisensor systems is driven by the need for fast, miniature, inexpensive, analytical devices, and advanced interdisciplinary based on both chemometric and (nano)material approaches. A multicomponent analysis of complex mixtures in environmental and technological monitoring, biological samples, and cell culture requires chip-based multisensor systems with high-stability sensors. In this paper, we describe the development, characterization, and applications of chip-based nanoelectrochemical sensor arrays prepared by the directed electrochemical nanowire assembly (DENA) of noble metals and metal alloys to analyze aqueous solutions. A synergic action of the electrode transducer function and electrocatalytic activity of the nanostructured surface toward analytes is achieved in the assembled metal nanowire (NW) sensors. Various sensor nanomaterials (Pd, Ni, Au, and their multicomponent compositions) can be electrochemically assembled on a single chip without employing multiple cycles of photolithography process to realize multi-analyte sensing applications as well as spatial resolution of sensor analysis by this single-chip multisensor system. For multi-analyte electrochemical sensing, individual amperometric signals of two or more nanowires can be acquired, making use of the specific electrocatalytic surface properties of the individual nanowire sensors of the array toward analytes. To demonstrate the application of a new electrochemical multisensor platform, Pd-Au, Pd-Ni, Pd, and Au NW electrode arrays on a single chip were employed for the non-enzymatic analysis of hydrogen peroxide, glucose, and ethanol. The analytes are determined at low absolute values of the detection potentials with linear concentration ranges of 1.0 × 10-6 - 1.0 × 10-3 M (H2O2), 1.5 × 10-7 - 2.0 × 10-3 M (glucose), and 0.7 × 10-3 - 3.0 × 10-2 M (ethanol), detection limits of 2 × 10-7 M (H2O2), 4 × 10-8 M (glucose), and 5.2 × 10-4 M (ethanol), and sensitivities of 18 µA M-1 (H2O2), 178 µA M-1 (glucose), and 28 µA M-1 (ethanol), respectively. The sensors demonstrate a high level of stability due to the non-enzymatic detection mode. Based on the DENA-assembled nanowire electrodes of a compositional diversity, we propose a novel single-chip electrochemical multisensor platform, which is promising for acquiring complex analytical signals for advanced data processing with chemometric techniques aimed at the development of electronic tongue-type multisensor systems for flexible multi-analyte monitoring and healthcare applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...